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1 Constrained Search with I.I.D. Samples

The existence of an outside option governed by X0 = M0 = 0 implies that each sample

is effectively sampled from a censored normal. For our characterization of the optimal

policy, we need to derive the distribution of the first-order statistic of n censored normal

distributions. The distribution function for a normal variable with mean 0 and standard

deviation σ, censored at 0 is given by:

f (x; σ) =
1√

2πσ2
e−

x2

2σ2 Ix>1,

where Ix>1 is the indicator function for x > 1. From here we see that a censored normal

with standard deviation σ has the same distribution as a censored normal with standard

deviation 1 multiplied by σ, much like the uncensored normal.1 Thus, the first-order

statistic of n censored normals with standard deviation σ has the same distribution as

σY(n) where Y(n) is the first-order statistic of n censored normals with standard deviation

1. Thus, the problem of the decision maker can be written as

max
n,σ

σY(n) − nc(σ),

which leads to the result in Proposition 2.
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1This scale-invariance property only holds when censoring is at 0.
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2 The Impacts of Constraints

To our knowledge, bounds on the order statistics of censored normal variables are not

readily available. We now derive an upper bound for Y(n). Let t > 0 be arbitrary and

{Xi}i be a sequence of i.i.d. censored normal variables with standard deviation 1. By

Jensen’s inequality,

e(tE(Y(n))) ≤ E(etY(n)) = E(max
i∈n

etXi).

Since Xi ≥ 0 for all i, their maximum is lower than their sum. Thus,

E(max
i∈n

etY(n)) ≤
n

∑
i=1

E(etXi) = n
(

1
2

e
t2
2 (1 + er f (

t
2
)

)
,

where the last equality follows from taking the expectation and er f denotes the Gaussian

error function.

By definition, er f ( t
2) ≤ 1. Combining these inequalities we have:

e(tE(Y(n))) ≤ n
(

1
2

e
t2
2 (1 + 1)

)
.

Taking log of both sides and dividing by t yields

E(Y(n)) ≤
logn

t
+

t
2

.

Minimizing the right hand side for a sharper upper bound implies t =
√

2logn, which

generates our desired bound:

E(Y(n)) ≤
√

2logn.

Since the expected payoff from any sample of n needs to account for their cost, this

bound also offers an upper bound on the expected payoffs: for any number n of samples,

V̄iid < σ
√

2logn.2 Thus, as n gets large, V̄iid cannot grow faster than the
√

2logn, which

leads to the asymptotic inefficiency in Corollary 4.

2This bound is a frequently-used bound for the first-order statistic of normals, which implies that,
for low n, it is not a sharp bound for the statics of variables following a standard normal distribution.
Indeed, the censored distribution always has a higher mean and first order stochastically dominates the
uncensored distribution.
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