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Abstract

This appendix contains: i) a discussion of continuity of the stopping boundaries; ii)

proofs of corollaries in the main text; iii) a recursive formulation of the welfare func-

tion; iv) the equilibrium and social planner’s policies for exponential well-ordered cost

functions; v) equilibrium characterization pertaining to the case when later innova-

tions are penalized; vi) welfare comparisons for fixed search speeds; vii) an illustration

of the optimal team composition; viii) an analysis of the model with independent

observations; and ix) a discussion of alternatives to the regularity assumption.

1 Continuity of the Stopping Boundaries

In this section we show that, in any Markov equilibrium, any alliance is associated with a

boundary that is almost surely continuous, provided minimal conditions on agents’ individ-

ual searches hold. Namely, we assume that all agents search non-trivially if on their own,

effectively assuming that all search costs are not prohibitively high.

Lemma OA 1. If for all i ∈ N , gii(M) < M for all M , then in any Markov equilibrium, for

any A ⊂ N , there exists an optimal stopping boundary gA : R+ → R such that gA(M) ≤M ,

gA is almost surely continuous, and τA = inf{t ≥ 0 : Xt = gA(Mt)}.
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Proof. First, for any maximal valueM , never stopping (gA(M) = −∞) cannot be an equilib-

rium strategy for any alliance. Otherwise, the payoffs to all members would be unboundedly

small, violating individual optimality. Furthermore, since the single-agent search value is

positive for all agents, it can never be a best response, for any agent under any equilibrium,

to stop when X =M . Therefore, the stopping boundary of any alliance lies below M .

Towards a contradiction, suppose that, for some alliance A, the stopping boundary gA(M)

is discontinuous. Let M̂ denote a point of discontinuity. Since gA(M̂) is a point of stopping,

we must have some agent i that finds it optimal to stop at gA(M̂). That is, gAi (M̂) = gA(M̂).

By Lemma A.2 in the main text, the stopping boundary of agent i has to be a drawdown

stopping boundary, and therefore continuous. Hence, in order to have a discontinuity in

gA, it must be that the identity of the agent who stops changes from i some j ̸= i around

M̂ . Without loss of generality, assume that the change happens to the right of M̂ . That

is, for ε > 0, at M̂ + ε, agent j is the first to leave alliance A. Again, by Lemma A.2,

agent j’s stopping boundary is also a drawdown stopping boundary, and thus continuous.

Furthermore, since both boundaries are drawdown boundaries, they are parallel and never

cross one another. Therefore, the agent with the lower drawdown would prefer to stop at both

M̂ and M̂+ε in a continuous manner, contradicting the existence of a discontinuity at M̂ . In

other words, in every alliance, there is at least one agent that has a continuous boundary, and

the stopping boundary of the alliance is that boundary. The stopping boundaries of agents

who continue their search may exhibit discontinuities. However, since these boundaries are

never reached, it is without loss to assume they take the form of a drawdown stopping

boundary with agents’ respective drawdown sizes.

2 Proofs of Corollaries

The proofs of Corollaries 1 and 3 follow directly from the text preceding them.

Proof of Corollary 2. First, we show that as alliances shrink, total search speed cannot in-

crease. Let fA(σA) =
(∑

i∈Awi(σ
A
i )

ρ
) 1

ρ . And assume ρ > 0. From here on, we will suppress

the superscript A on f under the CES specification.

Assume there exists an alliance A and an agent i such that A∪{i} generates lower overall

search speed compared to that generated by alliance A. That is, f(σA) > f(σA∪{i}). Unique
solutions are interior, so for each agent j ∈ A,

2cj(σ
A
j )

c′j(σ
A
j )

(σA
j )

ρ−1wj
f(σA)

f(σA)ρ
= f(σA) and

2cj(σ
A∪{i}
j )

c′j(σ
A∪{i}
j )

(σ
A∪{i}
j )ρ−1wj

f(σA∪{i})

f(σA∪{i})ρ
= f(σA∪{i}).
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Since f(σA) > f(σA∪{i}) and each of the cost functions is log-convex (the left-hand sides are

strictly decreasing in σj), it must be the case that σA
j ≤ σ

A∪{i}
j . The CES formulation then

implies that f(σA) < f(σA ∪ {i}), in contradiction.

The comparative statics pertaining to individuals’ search speed follow immediately from

log-convexity of the cost functions.

Proof of Corollary 4. To prove the corollary, we introduce superscripts eq and sp to denote

the equilibrium and social planner’s solutions, respectively (these are suppressed otherwise,

when there is low risk of confusion). Assume ρ > 0. We use the following set of lemmas.

For these, we assume interior equilibrium and social planner search speeds, as presumed in

the corollary.

Lemma OA 2. Any active alliance A has a higher search speed under the social planner’s

solution compared to the equilibrium.

Proof. Towards a contradiction, suppose there exists an allianceA such that (
∑

i∈Awi(σ
A,eq
i )ρ)1/ρ >

(
∑

i∈Awi(σ
A,sp
i )ρ)1/ρ. The social planner’s solution satisfies

2
∑

i∈A ci(σ
A,sp
i )

c′j(σ
A,sp
j )

wj(σ
A,sp
j )ρ−1 (

∑
i∈Awi(σ

A,sp
i )ρ)1/ρ∑

i∈Awi(σ
A,sp
i )ρ

= (
∑
i∈A

wi(σ
A,sp
i )ρ)1/ρ ∀j ∈ A,

which implies that

2cj(σ
A,sp
j )

c′j(σ
A,sp
j )

wj(σ
A,sp
j )ρ−1 (

∑
i∈Awi(σ

A,sp
i )ρ)1/ρ∑

i∈Awi(σ
A,sp
i )ρ

< (
∑
i∈A

wi(σ
A,sp
i )ρ)1/ρ < (

∑
i∈A

wi(σ
A,eq
i )ρ)1/ρ ∀j ∈ A.

From log-convexity of costs, the left-hand side of this inequality increases as σA,sp
j decreases.

For the equilibrium constraint to hold, σA,eq
j < σA,sp

j for all j ∈ A, in contradiction.

Lemma OA 3. In the social planner’s solution, for any alliance A and any agent i /∈ A,

f(σA,sp) < f(σA∪{i},sp).

Proof. Suppose not. Then, there exists an alliance A and an individual i /∈ A such that

f(σA,sp) ≥ f(σA∪{i},sp). Then, for all l ∈ A, we must have

2
∑

j∈A cj(σ
A,sp
j )

c′l(σ
A,sp
l )

wl(σ
A,sp
l )ρ−1 f(σA,sp)

[f(σA,sp)]ρ
= f(σA,sp) and

2
∑

j∈A∪{i} cj(σ
A∪{i},sp
j )

c′l(σ
Ak∪{i},sp
l )

wl(σ
Ak∪{i},sp
l )ρ−1 f(σA∪{i},sp)

[f(σA∪{i},sp)]ρ
= f(σA∪{i},sp).
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Since search costs are strictly positive, the second equality implies that, for all l ∈ A,

2
∑

j∈A cj(σ
A∪{i},sp
j )

c′l(σ
A∪{i},sp
l )

wl(σ
Ak∪{i},sp
l )ρ−1f(σA∪{i},sp)

[f(σA∪{i},sp)]ρ
< f(σA∪{i},sp) ≤ f(σA,sp).

Log-convexity of costs implies that the left-hand side of this inequality increases as

σ
A∪{i},sp
l decreases. The social planner’s constraint for alliance A then implies that σA,sp

l <

σ
A∪{i},sp
l for all l ∈ A, in contradiction to the last inequality. Furthermore, in the social

planner’s solution, if Ak and Ak+1 are consecutive active alliances, then for any i in Ak+1,

we have σAk,sp
i > σ

Ak+1,sp
i since Ak+1 ⊊ Ak.

To prove Corollary 4, we combine Lemmas OA 2 and OA 3 with Corollary 2. Specifically,

consider any non-singleton alliance A on path for the equilibrium and the social planner’s

solution. For any i ∈ A, Corollary 2 implies that σA,eq
i < σ

{i},eq
i . From Lemmas OA 2 and

OA 3, σA,sp
i > σ

{i},sp
i . Since an individual searching on her own chooses the optimal search

speed, σ
{i},eq
i = σ

{i},sp
i . We therefore have σA,sp

i > σA,eq
i . Furthermore, from Lemma OA 3, in

the welfare maximizing solution, each agent’s search speed decreases as her alliance shrinks

in size.

Proof of Corollary 5. Towards a contradiction, suppose that for some alliance Ak, which is

active in both the social planner’s solution and the equilibrium, we have deqAk
> dspAk

. Consider

an alternative policy for the social planner, under which each agent i in Ak \ Ak+1 searches

with σAk,eq
i when the current gap M − X is between deq and dspAk

. Under this policy, each

agent i in Ak+1 still searches using a speed σ
Ak+1,sp
i , as in the candidate policy. We now show

this generates an improvement.

First, under this policy, agents in Ak \ Ak+1 are better off. Indeed, those agents are

utilizing the same search speed they would in equilibrium. Agents in Ak+1 are searching

with speed σ
Ak+1,sp
i . From Corollary 4, σ

Ak+1,sp
i > σAk,eq

i . Thus, agents in Ak \ Ak+1 are

receiving greater positive externalities compared to equilibrium. Furthermore, since the gap

is larger than deqAk
, in equilibrium the agents have a positive continuation value, which is

increased due to positive externalities.

Second, under this policy, agents in Ak+1 are better off. Indeed, when the gap between

the observed maximum and their search outcomes falls between dspAk
and deqAk

, their own

search speed is unchanged, but since speed aggregators take the CES form with substitutes,

they receive positive externalities from agents in Ak \ Ak+1.

We conclude that deqAk
> dspAk

cannot be optimal for any Ak.
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3 Recursive Formulation of Welfare

As mentioned in the text, welfare can be written in a recursive fashion. Namely, we have:

Proposition OA 1. Suppose A1, . . . , AK is the optimal sequence of alliances with associated

drawdown sizes dA1 , ..., dAK
. When search starts at X0 =M0 = 0, we have:

W (0, 0, N) =
K∑

m=1

(
(dAm)

2 − (dAm−1)
2
) ∑

i∈Am
ci(σ

Am
i )

(fAm(σAm))2
,

where we set dA0 = 0.

Proof. Using Propositions 3 and 4, we can write the expected welfare as follows:

Wk(0, 0) =(dAk
)2
∑

i∈Ak
ci(σ

Ak
i )

(fAk(σAk))2
+ dAk

K∑
m=k

(dAm+1 − dAm)
2
∑

i∈Am+1
ci(σ

Am+1

i )

(fAm(σAm))2

+(dAk+1
− dAk

)2
∑

i∈Ak+1
ci(σ

Ak+1

i )

(fAk+1(σAk+1))2

+ (dAk+1
− dAk

)
K∑

m=k+1

(dAm+1 − dAm)
2
∑

i∈Am+1
ci(σ

Am+1

i )

(fAm(σAm))2

...

+

...

+(dAK
− dAK−1

)2
∑

i∈AK−1
ci(σ

AK−1

i )

(fAK−1(σAK−1))2

+ (dAK
− dAK−1

)
K∑

m=K−1

(dAm+1 − dAm)
2
∑

i∈Am+1
ci(σ

Am+1

i )

(fAm(σAm))2

+(dAK
− dAK−1

)2
∑

i∈AK
ci(σ

AK
i )

(fAK (σAK ))2
.

The first term, (dAk
)2

∑
i∈Ak

ci(σ
Ak
i )

(fAk (σAk ))2
, corresponds to the expected payoffs of members of

alliance Ak. Similarly, terms of the form (dAj+1
− dAj

)2
∑

i∈Aj+1
ci(σ

Aj+1
i )

(fAj+1 (σAj+1 ))2
correspond to the

expected payoffs of members in Aj+1 who are not in Aj. The remaining terms capture the

externalities induced by members of each alliance. For instance, the term dAk

∑K
m=k(dAm+1−

dAm)
2
∑

i∈Am+1
ci(σ

Am+1
i )

(fAm (σAm ))2
corresponds to the positive externalities (net of own payoffs) members

of the first alliance Ak induce on members of all future alliances. Similarly, each term of
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the form (dAj+1
− dAj

)
∑K

m=j+1(dAm+1 − dAm)
2
∑

i∈Am+1
ci(σ

Am+1
i )

(fAm (σAm ))2
corresponds to the positive

externalities (net of own payoffs) members of alliance Aj induce on future alliances. Nat-

urally, the last alliance AK has no alliances that follow it and, therefore, does not induce

externalities of this sort.

Noticing the telescoping sum and setting dAk−1
= 0, we can write

Wk(0, 0) =
K∑

m=k

(
(dAm)

2 − (dAm−1)
2
) ∑

i∈Am
ci(σ

Am
i )

(fAm(σAm))2
.

In particular, for k = 1, we get the formula asserted in the proposition.

4 Equilibrium and Social Planner Solutions for Expo-

nential Costs

In this following section, for simplicity of exposition we focus on CES production function

with ρ = 1 and the specific class of exponential cost functions that underlie Figure 4 in the

main text.

c(σ) = eσ = c1(σ) = β2c2(σ) = β3c3(σ).

It follows that:

c′1(σ) = c(σ), c′2(σ) =
1

β2
c(σ) , c′3(σ) =

1

β3
c(σ).

The ratio of costs to marginal costs is identical across agents. We focus here on the

symmetric equilibrium profile. Technically, this setting is not regular and there are multiple

equilibria. We maintain this example for its simplicity.

Observation OA 1. If the alliance {1, 2, 3} is active under the social planner’s policy, the

resulting total search speed is 6 and the total search cost is 3e2
3√β2β3

.
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Indeed, search speeds are determined by the following system:

2
(
c(σ1) +

1
β2
c(σ2) +

1
β3
c(σ3)

)
σ1 + σ2 + σ3

= c(σ1),

2
(
c(σ1) +

1
β2
c(σ2) +

1
β3
c(σ3)

)
σ1 + σ2 + σ3

=
1

β2
c(σ2),

2
(
c(σ1) +

1
β2
c(σ2) +

1
β3
c(σ3)

)
σ1 + σ2 + σ3

=
1

β3
c(σ3).

Solving the equations simultaneously, we get:

1

3
(σ1 + σ2 + σ3) = 2,

c(σ1) +
1

β2
c(σ2) +

1

β3
c(σ3) =

3e2

3
√
β2β3

.

Observation OA 2. If alliance {i, j} is active under the social planner’s policy, the resulting

total search speed is 4 and the total search cost is 2e2

2
√

βiβj
.

In this case, search speeds are determined by the following system:

2
(

1
βi
c(σi) +

1
βj
c(σj)

)
σi + σj

= c(σi)
1

βi
,

2
(

1
βi
c(σi) +

1
βj
c(σj)

)
σi + σj

= c(σj)
1

βj
.

Solving the equations simultaneously, we get, as stated:

1

3
(σi + σj) =

4

3
,

1

βi
c(σi) +

1

βj
c(σj) =

2e2

2
√
βiβj

.

Observation OA 3. In equilibrium, in any alliance A ⊂ {1, 2, 3}, the total search speed is

2/3. Agents share the speed costs equally. Each agent’s individual search cost is given by
1
βi
e

2
|A| and total cost is

∑
i∈A

1
βi
e

2
|A| .

In equilibrium, for any alliance A, individual search speeds are determined by:

2 1
βi
c(σA

i )∑
i∈A σ

A
i

= c(σi)
1

βi
∀i ∈ A.
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Solving this system yields:

1

3

∑
i∈A

σA
i =

2

3
,

σA
i = σA

j ∀i ∈ A,

c(σi) =
1

βi
e

2
|A| .

Straightforward calculations then generate the following two observations, where {1}{2}{3}
stands for agent 1 leaving before agent 2, who leaves before agent 3; {1, 2}{3} stands for

agents 1 and 2 forming an exit wave and leaving first, followed by agent 3; and so on.

Observation OA 4. There are four patterns of equilibrium exit waves:

1. {1}{2}{3}, which requires β2 > e
1
3 and β3

β2
> e;

2. {1, 2}{3}, which requires β2 < e
1
3 and β3 > e

4
3 ;

3. {1}{2, 3}, which requires β2 >
4
3
and β3

β2
< e;

4. {1, 2, 3}, which requires β2 <
4
3
and β3 < e

4
3 .

Observation OA 5. There are four patterns of optimal exit waves:

1. {1}{2}{3}, which requires min
(

2
9

1
3√β2β3

, 1
2

1
2√β2β3

)
> 1

β3
and 1

β3
> 1

2√β2β3
− 1

3
1

3√β2β3
;

2. {1, 2}{3}, which requires min
(

2
9

1
3√β2β3

, 1
2

1
2√β2β3

)
> 1

β3
and 1

β3
< 1

2√β2β3
− 1

3
1

3√β2β3
;

3. {1}{2, 3}, which requires 1
2

1
2√β2β3

< min
(

2
9

1
3√β2β3

, 1
β3

)
;

4. {1, 2, 3}, which requires 2
9

1
3√β2β3

< min
(

1
2

1
2√β2β3

, 1
β3

)
.

Figure 1 here expands on Figure 4 in the main text and illustrates the wedge between the

equilibrium and social exit wave sequences. Each panel corresponds to a different pattern

of the social planner’s (SP) optimal exit waves. As can be seen, while the “weak order” by

which exit waves occur in equilibrium is preserved by the social planner—see Lemma 1 in

the main text—the pattern of exit waves may still differ dramatically depending on whether

agents have full discretion or are governed by the socially optimal policy.
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Figure 1: Comparison of Equilibrium and Social Planner Solutions

5 Penalties for Later Innovations

We now consider an extension of our model where stopping earlier grants an advantage. For

simplicity, we consider here a team of only two agents. We assume that the first agent to

stop, say at time t, receives Mt. The second agent to stop, say at time s > t, receives αMs,

with α < 1. If both agents stop at the same time t, they both receive Mt.
1

Our first proposition shows that if the stopping times are (weakly) ordered at any point,

they are weakly ordered everywhere. Thus, the order of exits is deterministic.

Proposition OA 2. If g
{1,2}
i (M∗) ≥ g

{1,2}
j (M∗) for some M∗, then g

{1,2}
i (M) ≥ g

{1,2}
j (M)

for all M .

Proof. If g
{1,2}
i (M∗) ≥ g

{1,2}
j (M∗) then it must be the case that V j

j (M
∗, gTi (M

∗)) ≥ M∗ and

1The analysis naturally extends to N agents via a decreasing sequence of discounts: α0 = 1 ≥ α1 ≥ α2 ≥
... ≥ αN . In addition, one could consider more continuous version of this setup, where the second agent who
stops at time s > t receives Mt + α(Ms − Mt). That model generates qualitatively similar results, but is
more cumbersome to analyze.
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V
{1,2}
i (M, gTi (M

∗)) = V i
i (M

∗, g
{1,2}
i (M∗)) =M∗. This implies that

g
{1,2}
i (M∗)−M∗ +

(σi
i)

2

2ci(σi
i)

≤ 0,

αM +
cj(σ

j
j )

(σj
j )

2

(
g
{1,2}
i (M∗)−M∗ +

α(σj
j )

2

2cj(σ
j
j )

)2

≥M.

Now, since α ≤ 1, the second inequality implies that

αM +
cj(σ

j
j )

(σj
j )

2

(
g
{1,2}
i (M∗)−M∗ +

α(σj
j )

2

2cj(σ
j
j )

)2

≥M,

g
{1,2}
i (M∗)−M∗ +

α(σj
j )

2

2cj(σ
j
j )

≥ 0,

g
{1,2}
i (M∗)−M∗ +

(σj
j )

2

2cj(σ
j
j )

≥ 0.

From this system, it must be the case that
(σj

j )
2

2ci(σ
j
j )

≥ (σi
i)

2

2ci(σi
i)
. Now, towards a con-

tradiction, suppose there exists a different M such that g
{1,2}
i (M) < g

{1,2}
j (M). Then,

V j
j (M, g

{1,2}
i (M)) =M and V i

i (M, g
{1,2}
i (M)) > M , which yield the following inequalities:

g
{1,2}
i (M)−M +

(σj
i )

2

2ci(σi
i)
> 0 and

g
{1,2}
i (M)−M +

(σj
j )

2

2cj(σ
j
j )

≤ 0.

These can hold only if
(σj

j )
2

2cj(σ
j
j )
<

(σj
i )

2

2ci(σi
i)
, generating a contradiction.

In general, there is a leader—the agent who exits early—and a follower—the agent who

exits later. As we now show, the leader’s stopping boundary remains her equilibrium stopping

boundary regardless of α and is governed by the drawdown identified in Proposition 2 in the

text. Both the leader and the follower’s search speeds, when searching together or separately,

also follow identical considerations to those pertaining to the setting analyzed in the paper

and described in Proposition 1 of the text. In contrast, the follower’s stopping boundary

does change since her rewards are scaled down by α.
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We call agent i the leader if

(σ
{1,2}
i + σ

{1,2}
j )2

2(ci(σ
{1,2}
i ))

≤
(σ

{1,2}
i + σ

{1,2}
j )2

2(cj(σ
{1,2}
j ))

.

Henceforth, we will use L and F to denote the leader and the follower, respectively.

5.1 Equilibrium Speeds

The proof of Proposition 1 does not hinge on agents receiving the full value of the observed

maximum.2 Therefore, analogous analysis yields that the search speeds (when interior)

satisfy the following:

2cL(σ
{1,2}
L )

c′L(σ
{1,2}
L )

=
2cF (σ

{1,2}
F )

c′F (σ
{1,2}
F )

= σ{1,2}.

5.2 Leader’s Optimal Stopping

Since the search speed in any alliance is constant, the leader’s optimal stopping boundary

satisfies

g
{1,2}
L (M) =M − (σ

{1,2}
L + σ

{1,2}
F )2

2(cL(σ
{1,2}
L ))

.

5.3 Follower’s Optimal Stopping

Urgun and Yariv (2021b) show that, in the solo-search problem, the optimal speed is inde-

pendent of α and thus identical to that identified in our baseline model. Their analysis also

shows that the follower’s optimal stopping boundary is given by:

gFF (M) =M − α(σF
F )

2

2cF (σF
F )
.

Since the search speeds of the two agents differ, it is possible that g
{1,2}
L (M) ≥ gFF (M). In

that case, the follower stops at the same time as the leader.

If g
{1,2}
L (M) ≤ gFF (M), when the leader stops, the follower’s payoff is at least as high as

that derived from stopping immediately and receiving M . Again, utilizing Urgun and Yariv

2See also Urgun and Yariv (2021b) for additional details on the optimal policy pertaining to scaled-down
search rewards.
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(2021b), the continuation payoff would is:

V F
F (M, g

{1,2}
L ) = αM +

cF (σ
F
F )

(σF
F )

2
(g

{1,2}
L (M)− gFF (M))2,

whereas stopping yields an immediate M . Since both stopping boundaries are drawdown

stopping boundaries,
cF (σF

F )

(σF
F )2

(g
{1,2}
L (M) − gFF (M))2 is a constant independent of M . When

(1− α)M is larger than this constant, the follower stops as soon as the leader does.

6 Fixed Search Speed

Suppose the search speed is fixed and determined at the outset. Agents cannot then adjust

their search speed as alliances change in size or composition. To illustrate the impacts of

such limited adjustment possibilities, we consider the simple case of two agents with well-

ordered costs. That is, agent 1’s search cost is given by c(·), while agent 2’s search cost is

given by βc(·) with β > 1. In this case, agents’ optimal solo search speeds coincide. We

consider two cases: one in which both agents are restricted to a search speed that is optimal

for their single-agent search; the second where both agents are restricted to a search speed

that is optimal when they search jointly.

6.1 Single-agent Search Speed

Suppose agents are restricted to the search speed σI that would be optimal were they each

searching individually on their own:

2c(σI)

c′(σI)
= σI .

As we soon show, this is, in fact, the welfare-maximizing fixed search speed.

When searching as a team, the optimal search speed for each individual would be given

by σT < σI , where

c(σT )

c′(σT )
= σT .

The corresponding drawdown for the team is then be given by

dT =
2(σT )2

c(σT )
.
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In contrast, if both agents are restricted to using σI , the equilibrium drawdown size of

the initial alliance consisting of both agents is given by:

dTrestricted =
2(σI)2

c(σI)
.

Claim OA 1. dTrestricted ≤ dT .

Proof. Recall that σT minimizes c(σ)
(2σ)2

. Inverting the ratio implies that we must have 4(σI)2

2c(σI)
≤

4(σT )2

2c(σT )
.

If agent 2 continues searching after agent 1 exits, the search speed for agent 2 is optimal,

and her solo drawdown size is therefore unaffected by the constraint and given by Proposition

2 in the text—call this drawdown size dI . In particular, if the two agents leave at disjoint

times in the unrestricted case, so that dT < dI , the claim implies that the agents would also

leave at disparate times in the restricted case, since dTrestricted ≤ dT < dI . However, if agents

depart jointly in the unrestricted case, that exit wave might disappear in the restricted case.

To see this, observe that, in order to have an exit wave in the unrestricted case, we need:

4(σT )2

c(σT )
≥ β(σI)2

c(σI)
.

For this wave to break in the restricted case, we need:

4(σI)2

c(σI)
≤ β(σI)2

c(σI)
.

If β ≥ 4, the restricted case will have agents departing at separate points, regardless of the

structure of exit waves in the unrestricted case. To see the change in individual welfare,

consider an agent utilizing a drawdown stopping boundary with drawdown size d and search

speed σ that comes at a cost c(σ). From Urgun and Yariv (2021b), the expected value for

that agent is given by:

V (d, σ) = d− d2

4σ2
c(σ).

Therefore, in the unrestricted case, the expected value for agent 1, who is the first to leave

is given by:

V 1 =
(σT )2

c(σT )
=
dT

2
,

13



whereas, in the restricted case, the expected welfare for agent 1 is given by:

V 1
restricted =

(σI)2

c(σI)
=
dTrestricted

2
.

In particular, from the claim above, the expected welfare of agent 1 necessarily decreases.

The expected welfare of agent 2 depends on whether she departs when agent 1 does or

continues searching. We omit its derivations. In either case, however, the restriction on the

search speed leads to a decrease in her expected welfare as well.

6.2 Team Search Speed

We now consider the case in which agents are restricted to the optimal search speed for the

team, σT defined above.

Our analysis so far implies that agent 1’s expected welfare is unaffected by this constraint

and, using our previous notation, given by dT

2
.

Agent 2 may be affected if she continues searching after agent 1 terminates her search.

Indeed, when agent 2 can adjust her search speed to its optimal solo-level of σI , the corre-

sponding optimal drawdown is given by:

dI =
β(σI)2

2c(σI)
.

However, when agent 2 is restricted to continue searching with speed σT , she accordingly

adjusts her drawdown to

dIrestricted =
β(σT )2

2c(σT )
.

Claim OA 2. dIrestricted ≤ dI .

Proof. Recall that the optimal solo search speed σI minimizes c(σ)
σ2 . Inverting the ratio

immediately yields the claim as in the previous proof.

Intuitively, since agent 2 is now constrained to search with a less efficient speed, she

responds by searching for a shorter duration. As before, if the unrestricted setting generates

an exit wave with both agents ceasing search in unison, dT ≥ d2 and the restricted environ-

ment would yield the same exit wave. However, if the unrestricted search leads the agents to

depart at different points, this need not be the case when search speed is restricted to stay
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constant. Indeed, the two agents would terminate their search together if

4(σT )2

c(σT )
≥ β(σT )2

c(σT )
.

Again, β = 4 is the critical value: when β < 4 so that agents’ costs are sufficiently similar,

a non-trivial exit wave may occur.

We can now assess the welfare loss of agent 2. Certainly, if the agents depart together

both in the restricted and the unrestricted setting, the constraint on speed has no bite and

neither agent’s expected welfare is affected.

In general, agent 1 departs with a maximal observed value ofM when the search observa-

tion hits precisely X =M−dT . If agent 2 continues searching on her own in the unrestricted

case, her resulting continuation value is:

V 2(M,M − dT ) =M +
c(σI)

β(σI)2

(
dT − β(σI)2

2c(σI)

)2

.

When restricted to continue searching with a speed of σT , agent 2’s continuation value is

given by:

V 2
restricted(M,M − dT ) =M +

c(σT )

β(σT )2

(
dT − β(σT )2

2c(σT )

)2

.

The difference captures the welfare loss. In particular, whenever there is a non-trivial exit

wave in the restricted setting, when agents depart in sequence in the unrestricted setting,

the second term of V 2(M,M − dT ) captures the loss in welfare.

6.3 Optimal Fixed Search Speed

One could tailor the fixed search speed to maximize the maximal welfare of the team. For

illustration, suppose the costs of the agents are close enough so that a non-trivial exit wave

occurs when the search speed is fixed. Namely, suppose that β ≤ 4. For any fixed search

speed σ̃, the expected welfare of agent 1 is given by:

max
d
V 1(d, σ̃) = d− d2

(2σ̃)2
c(σ̃).
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Agent 1 then chooses her optimal drawdown size d̃ to satisfy the resulting first-order condi-

tion:

∂V1
∂d

= 1− 2d̃
c(σ̃)

(2σ̃)2
= 0 ⇒ d̃ =

2σ̃2

c(σ̃)
.

This yields an expected welfare of

V 1
restricted(d̃, σ̃) =

2σ̃2

c(σ̃)
−

(
2σ̃2

c(σ̃)

)2
(2σ̃)2

c(σ̃2) =
σ̃2

c(σ̃)
.

Since β ≤ 4, agent 2 exits at the same time and her expected welfare can be calculated

similarly:

V 2
restricted(d̃, σ̃) =

2σ̃2

c(σ̃)
−

(
2σ̃2

c(σ̃)

)2
(2σ̃)2

c(σ̃2)
1

β
=

(
2− 1

β

)
σ̃2

c(σ̃)
.

The resulting expected welfare W (σ̃) for both agents is then:

Wrestricted(σ̃) = V 1
restricted(d̃, σ̃) + V 2

restricted(d̃, σ̃)

=

(
3− 1

β

)
σ̃2

c(σ̃)
.

The overall welfare is then maximized when σ̃2

c(σ̃)
is maximized. Now, recall that the optimal

individual search speed is defined by σI = argminσ̃
c(σ̃)
σ̃2 . In particular, the optimal fixed

search speed is the individually-optimal search speed σI , as analyzed in Section 6.1 above.

7 Team Composition

We now show that agents may prefer team members characterized by higher costs and

marginal costs, provided the ratio of costs to marginal costs is sufficiently high.

Assume speed aggregators take the CES form with ρ > 0 and consider a team of two

agents with log-convex costs c1 and c2. Suppose agent 2 is replaced with agent 2̂ with cost

ĉ2, such that c2(σ) < ĉ2(σ) << c1(σ) and c
′
2(σ) < ĉ′2(σ) but

c2(σ)
c′2(σ)

< ĉ2(σ)
ĉ′2(σ)

for all σ ∈ [σ, σ̄].

Assume equilibrium search speeds are interior for either team. Let σ̂2(σ1) be the solution of:

2ĉ2(σ2)

ĉ′2(σ2)
(σ2)

ρ−11

2
=

(
1

2
σ
1/ρ
2 +

1

2
σ
1/ρ
1

)ρ
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for any given σ1. Assume further that(
1
2
σ
1/ρ
2 + 1

2
σ
1/ρ
1

)ρ
ĉ2(σ2(σ1))

<

(
1
2
σ
1/ρ
2 + 1

2
σ
1/ρ
1

)ρ
c1(σ1)

for all σ1. That is, agent 1 is first to stop for any choice of σ1, with agent 2̂ best responding.

Let V1 denote the equilibrium payoff of agent 1 with agent 2, and let V̂1 denote the

equilibrium payoff of agent 1 with agent 2̂. Then, V̂1 ≥ V1. To see this, observe that even if

agent 1 chooses the same equilibrium speed when partnered with agent 2̂ as she does when

partnered with agent 2, her payoff is higher since the best response of agent 2̂ is always larger

than the best response of agent 2. Thus, in equilibrium, she must be doing weakly better.

8 Independent Samples

In order to analyze the case with independent search outcomes, we turn our analysis to

a discrete-time setup with two agents, 1 and 2. As in our benchmark setting, we retain

the normality of observations assumptions. We also continue to assume that agents jointly

control the variance. If an alliance A ⊂ {1, 2}, A ̸= ∅ is conducting search at time t,

their observation is drawn from a normal distribution with mean 0 and standard deviation

σA
t =

∑
i∈A σ

A
i,t (an analogue of the CES speed aggregators with ρ = 1). The cost is still

paid per draw, but now accumulates in discrete periods as opposed to continuous time. We

maintain our assumptions on the cost of search speed, as well as the description of ultimate

search rewards, which follow from the maximal observation during search. When search is

conducted by a single agent, Urgun and Yariv (2021a) show that the optimal stopping policy

is characterized by a threshold and the optimal search speed is constant. They show that:

Proposition OA 3 (Urgun and Yariv, 2021a). For a given search speed σ, it is optimal to

stop once the satisficing threshold Si
i(σ) is reached, where S

i
i(σ) solves

c(σ) =

∫ ∞

Si
i(σ)

(x− Si
i(σ))ϕ

σ(x)dx.

The optimal search speed σi maximizes ψ−1
(

c(σ)
σ

)
σ, where ψ(v) = ϕ1(v) − v × (1 − Φ1(v))

and ϕσ denotes the normal probability density function with mean 0 and standard deviation

σ. The payoff from optimal search is Si
i(σi).

As noted in Urgun and Yariv (2021a), the function ψ(v) and its inverse are difficult to

simplify further in terms of elementary functions for closed-form characterizations, but they
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can be easily tabulated and some properties of both ψ(v) and its inverse are well known.

Once one of the players departs, the optimal search is stationary and identified by the

proposition above. Moreover, similar arguments to those presented in the text can be used

to show that equilibrium search speeds are constant within any alliance. Let σ
{1,2}
i for

i ∈ {1, 2} denote the search speed of agent i when both agents search jointly. There are two

thresholds S
{1,2}
1 (σ{1,2}) and S

{1,2}
2 (σ{1,2}) that determine when agent 1 and agent 2 cease

search, respectively. Equilibrium thresholds equal the continuation values given the search

speeds, while equilibrium search speeds are optimal given the thresholds.

For given search speeds, the optimal thresholds must satisfy, for i = 1, 2:

S
{1,2}
i (σ{1,2}) = −ci(σ{1,2}

i ) +

∫ min{S{1,2}
1 (σ{1,2}),S

{1,2}
2 (σ{1,2})}

−∞
S
{1,2}
i (σ1,2)ϕσ{1,2}

(x)dx

+

∫ max{S{1,2}
1 (σ{1,2}),S

{1,2}
2 (σ{1,2})}

min{S{1,2}
1 (σ{1,2}),S

{1,2}
2 (σ{1,2})}

[
I
(
S
{1,2}
i (σ{1,2}) ≥ S

{1,2}
j (σ{1,2})

)
Si
i(σi)

+ I
(
S
{1,2}
i (σ{1,2}) ≤ S

{1,2}
j (σ{1,2})

)
x
]
ϕσ{1,2}

(x)dx

+

∫ ∞

max{S{1,2}
1 (σ{1,2}),S

{1,2}
2 (σ{1,2})}

xϕσ{1,2}
(x)dx.

While amenable to numerical analysis, a closed-form description of the optimal thresh-

olds is naturally challenging to derive in this setting. Nonetheless, one can readily see one

qualitative distinction between equilibrium outcomes in this setting and those we identify in

the paper—the sequence of exit waves is no longer deterministic. Indeed, when sufficiently

extreme observations occur, both agents may leave at once. However, for moderately high

observations, one agent may leave on her own.

The equilibrium search speeds are chosen so that

σ
{1,2}
i = argmaxS

{1,2}
i (σ{1,2}) for i = 1, 2.

Additional players introduce further hurdles to tractability since, for each alliance, one

needs to consider the threshold corresponding to each agent. We leave the complete analysis

of the independent case for future research.

9 Alternatives to the Regularity Assumption

Uniqueness of equilibria allows us to identify comparative statics and offer a clear comparison

between equilibrium outcomes and socially efficient ones. Regularity provides sufficient con-
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ditions for unique equilibrium outcomes. It corresponds to restrictions on the environment’s

fundamentals. A different approach entails selection of equilibria, allowing for multiplicity.

As noted in the main text, if there is only a discrete set of solutions and equilibria are se-

lected to entail continuous strategies, the constant speed conclusion continues to hold. In

this section, we consider two alternative plausible selection rules: speed maximization and

Pareto efficiency. We show, using a class of examples, that these selection rules are unsuc-

cessful in picking out a unique equilibrium. That is, even with these natural selection rules,

further restrictions on fundamentals are necessary to guarantee uniqueness.

Consider the well-ordered cost setting with two agents. Assume exponential costs:

c1(σ) = eσ and c2(σ) = βeσ, with β > 1. Suppose speed aggregators are such that

f {1,2}(σ
{1,2}
1 , σ

{1,2}
2 ) = h(σ

{1,2}
1 ) + σ

{1,2}
2 , where h is continuous, increasing, strictly posi-

tive, and bounded on [σ, σ̄]. For simplicity, assume that for the singleton sets, we have

f {i}(σ
{i}
i ) = σ

{i}
i for i = 1, 2. For β large enough, any equilibrium entails sequential exits.

By Proposition 1 in the main text, any equilibrium that has an interior speed choice σ
{1,2}
2

must satisfy

2
c2(σ

{1,2}
2 )

c′2(σ
{1,2}
2 )

∂f {1,2}(σ
{1,2}
1 , σ

{1,2}
2 )

∂σ
{1,2}
2

= 2 = h(σ
{1,2}
1 ) + σ

{1,2}
2 .

In the alliance including both agents, the search speed is constant and equal to 2. In

particular, if there are multiple equilibria, they all yield the same alliance speed.

Suppose the alliance uses a drawdown stopping boundary with drawdown size d. When

starting with a maximum valueM and current observation X, with constant speed σ, denote

the expected time till the stopping boundary is reached by Td(M,X). Using Theorem 4.1

of Pedersen and Peškir (1998), we have that

Td(M,X) =
(d+M −X)(d−M +X)

4
.

By the equality implied by our Proposition 1, we must have σ
{1,2}
2 = 2 − h(σ

{1,2}
1 ). This

implies that the equilibrium drawdown size of agent 1 in the full alliance is only a function

of her own speed. We denote that drawdown size by d
{1,2}
1 (σ

{1,2}
1 ). Similarly, by Proposition

1, we know that σ
{2}
2 = 2 hence d

{2}
2 = 2β

e2
. Therefore, the equilibrium welfare (W eq) starting
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from state (0, 0) can be succinctly written as follows:

W eq(σ
{1,2}
1 ) =− T

d
{1,2}
1

(0, 0)c2(2− h(σ
{1,2}
1 )− T

d
{2}
2

(0, d
{1,2}
1 (σ

{1,2}
1 ))c2(σ

{2}
2 ) + d

{2}
2

− T
d
{1,2}
1

(0, 0)c1(σ
{1,2}
1 ) + d

{1,2}
1 (σ

{1,2}
1 )

=− (β − 2)β

e2
− e−h(σ

{1,2}
1 )−2σ

{1,2}
1 +2 + e−σ

{1,2}
1 + e2−2σ

{1,2}
1 .

The Pareto optimal speed then maximizes W eq(σ
{1,2}
1 ). The first-order condition is:

∂W eq(σ
{1,2}
1 )

∂σ
{1,2}
1

= −e−h(σ
{1,2}
1 )−2σ

{1,2}
1 +2

(
−h′(σ{1,2}

1 )− 2
)
− e−σ

{1,2}
1 − 2e2−2σ

{1,2}
1 = 0.

Concavity of W eq implies that

e2−h(σ)
(
h′′(σ)− (h′(σ) + 2)

2
)
+ eσ + 4e2 < 0.

This condition is easily satisfied for sufficiently concave h, in which case the first-order

condition has to hold for maximizers of W eq.

Assume h′(σ) < 1 for all σ so that the maximizer of W eq requires agent 1 to use a corner

speed value. We now identify restrictions on h so that both σ and σ̄ are maximizers of W eq,

in addition to being equilibrium solutions. In particular, from the first-order condition,

h′(σ) =
2eh(σ)+2 + eh(σ)+σ − 2e2

e2

h′(σ̄) =
2eh(σ̄)+2 + eh(σ̄)+σ̄ − 2e2

e2
.

For σ and σ̄ to both be maximizers, W eq(σ) = W eq(σ̄), which implies that

h(σ) = log

(
eh(σ̄)+2σ̄+2σ

eh(σ̄)+2σ̄+2 + eh(σ̄)+2σ̄+σ − eh(σ̄)+2σ+2 − eh(σ̄)+σ̄+2σ + e2σ+2

)
− 2σ + 2.

Finally, we choose h so that σ and σ̄ correspond to interior solutions for agent 2. Namely,

we choose h so that 2− h(σ) ∈ (σ, σ̄) and 2− h(σ̄) ∈ (σ, σ̄).

To summarize, as long as h is sufficiently concave, and the following system is satisfied,

there are two solutions that maximize the alliance’s speed and are Pareto optimal.

(i) h(σ) = log
(

eh(σ̄)+2σ̄+2σ

eh(σ̄)+2σ̄+2+eh(σ̄)+2σ̄+σ−eh(σ̄)+2σ+2−eh(σ̄)+σ̄+2σ+e2σ+2

)
− 2σ + 2,

(ii) 2− h(σ) ∈ (σ, σ̄),

(iii) 2− h(σ̄) ∈ (σ, σ̄).
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The system imposes constraints only at the end points of the speed interval. There are

infinitely many viable functions h (strictly positive, increasing, and sufficiently concave) that

satisfy it. Each such function provides an example in which neither speed maximization nor

Pareto optimality provide a unique equilibrium selection.
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